Source code for treetime.treeanc

import time, sys
import gc
import numpy as np
from Bio import Phylo
from Bio.Phylo.BaseTree import Clade
from . import config as ttconf
from . import MissingDataError,UnknownMethodError
from .seq_utils import seq2prof, prof2seq, normalize_profile, extend_profile
from .gtr import GTR
from .gtr_site_specific import GTR_site_specific
from .sequence_data import SequenceData

def compressed_sequence(node):
    if node.name in node.tt.data.compressed_alignment and (not node.tt.reconstructed_tip_sequences):
        return node.tt.data.compressed_alignment[node.name]
    elif hasattr(node, '_cseq'):
        return node._cseq
    elif node.is_terminal(): # node without sequence when tip-reconstruction is off.
        return None
    elif hasattr(node, '_cseq'):
        return node._cseq
    else:
        raise ValueError('Ancestral sequences are not yet inferred')

def mutations(node):
    """
    Get the mutations on a tree branch. Take compressed sequences from both sides
    of the branch (attached to the node), compute mutations between them, and
    expand these mutations to the positions in the real sequences.
    """
    if node.up is None:
        return []
    elif (not node.tt.reconstructed_tip_sequences) and node.name in node.tt.data.aln:
        return node.tt.data.differences(node.up.cseq, node.tt.data.aln[node.name], seq2_compressed=False, mask=node.mask)
    elif node.is_terminal() and (node.name not in node.tt.data.aln):
        return []
    else:
        return node.tt.data.differences(node.up.cseq, node.cseq, mask=node.mask)

string_types = [str] if sys.version_info[0]==3 else [str, unicode]
Clade.sequence = property(lambda x: x.tt.sequence(x, as_string=False))
Clade.cseq = property(compressed_sequence)
Clade.mutations = property(mutations)


[docs]class TreeAnc(object): """ Class defines simple tree object with basic interface methods: reading and saving from/to files, initializing leaves with sequences from the alignment, making ancestral state inference """
[docs] def __init__(self, tree=None, aln=None, gtr=None, fill_overhangs=True, ref=None, verbose = ttconf.VERBOSE, ignore_gaps=True, convert_upper=True, seq_multiplicity=None, log=None, compress=True, seq_len=None, ignore_missing_alns=False, keep_node_order=False, rng_seed=None, **kwargs): """ TreeAnc constructor. It prepares the tree, attaches sequences to the leaf nodes, and sets some configuration parameters. Parameters ---------- tree : str, Bio.Phylo.Tree Phylogenetic tree. String passed is interpreted as a filename with a tree in a standard format that can be parsed by the Biopython Phylo module. Branch length should be in units of average number of nucleotide or protein substitutions per site. Use on trees with longer branches (>4) is not recommended. aln : str, Bio.Align.MultipleSequenceAlignment, dict Sequence alignment. If a string passed, it is interpreted as the filename to read Biopython alignment from. If a dict is given, this is assumed to be the output of vcf_utils.read_vcf which specifies for each sequence the differences from a reference gtr : str, GTR GTR model object. If string passed, it is interpreted as the type of the GTR model. A new GTR instance will be created for this type. fill_overhangs : bool, default True In some cases, the missing data on both ends of the alignment is filled with the gap sign('-'). If set to True, the end-gaps are converted to "unknown" characters ('N' for nucleotides, 'X' for aminoacids). Otherwise, the alignment is treated as-is ref : None, optional Reference sequence used in VCF mode verbose : int, default 3 Verbosity level as number from 0 (lowest) to 10 (highest). ignore_gaps : bool, default True Ignore gaps in branch length calculations convert_upper : bool, default True Convert all sequences to upper case seq_multiplicity : dict If individual nodes in the tree correspond to multiple sampled sequences (i.e. read count in a deep sequencing experiment), these can be specified as a dictionary. This currently only affects rooting and can be used to weigh individual tips by abundance or important during root search. compress : bool, default True reduce identical alignment columns to one (not useful when inferring site specific GTR models). seq_len : int, optional length of the sequence. this is inferred from the input alignment or the reference sequence in most cases but can be specified for other applications. ignore_missing_alns : bool, default False **kwargs Keyword arguments to construct the GTR model .. Note:: Some GTR types require additional configuration parameters. If the new GTR is being instantiated, these parameters are expected to be passed as kwargs. If nothing is passed, the default values are used, which might cause unexpected results. Raises ------ AttributeError If no tree is passed in """ if tree is None: raise TypeError("TreeAnc requires a tree!") self.t_start = time.time() self.verbose = verbose self.log = log self.ok = False self.data = None self.log_messages = set() self.logger("TreeAnc: set-up",1) self._internal_node_count = 0 self.use_mutation_length = False self.ignore_gaps = ignore_gaps self.reconstructed_tip_sequences = False self.sequence_reconstruction = None self.ignore_missing_alns = ignore_missing_alns self.keep_node_order = keep_node_order self.rng = np.random.default_rng(seed=rng_seed) self._tree = None self.tree = tree if tree is None: raise MissingDataError("TreeAnc: tree loading failed! exiting") # set up GTR model self._gtr = None self.set_gtr(gtr or 'JC69', **kwargs) # set alignment and attach sequences to tree on success. # otherwise self.data.aln will be None self.data = SequenceData(aln, ref=ref, logger=self.logger, compress=compress, convert_upper=convert_upper, fill_overhangs=fill_overhangs, ambiguous=self.gtr.ambiguous, sequence_length=seq_len) if self.gtr.is_site_specific and self.data.compress: raise TypeError("TreeAnc: sequence compression and site specific gtr models are incompatible!" ) if self.data.aln and self.tree: self._check_alignment_tree_gtr_consistency()
[docs] def logger(self, msg, level, warn=False, only_once=False): """ Print log message *msg* to stdout. Parameters ----------- msg : str String to print on the screen level : int Log-level. Only the messages with a level higher than the current verbose level will be shown. warn : bool Warning flag. If True, the message will be displayed regardless of its log-level. """ if only_once and msg in self.log_messages: return self.log_messages.add(msg) lw=80 if level<self.verbose or (warn and level<=self.verbose): from textwrap import fill dt = time.time() - self.t_start outstr = '\n' if level<2 else '' initial_indent = format(dt, '4.2f')+'\t' + level*'-' subsequent_indent = " "*len(format(dt, '4.2f')) + "\t" + " "*level outstr += fill(msg, width=lw, initial_indent=initial_indent, subsequent_indent=subsequent_indent) print(outstr, file=sys.stdout)
#################################################################### ## SET-UP #################################################################### @property def leaves_lookup(self): """ The :code:`{leaf-name:leaf-node}` dictionary. It enables fast search of a tree leaf object by its name. """ return self._leaves_lookup @property def gtr(self): """ :setter: Sets the GTR object passed in :getter: Returns the current GTR object """ return self._gtr @gtr.setter def gtr(self, value): """ Parameters ----------- value : GTR the new GTR object """ if not isinstance(value, (GTR, GTR_site_specific)): raise TypeError("GTR instance expected") self._gtr = value
[docs] def set_gtr(self, in_gtr, **kwargs): """ Create new GTR model if needed, and set the model as an attribute of the TreeAnc class Parameters ----------- in_gtr : str, GTR The gtr model to be assigned. If string is passed, it is taken as the name of a standard GTR model, and is attempted to be created through :code:`GTR.standard()` interface. If a GTR instance is passed, it is set directly . **kwargs Keyword arguments to construct the GTR model. If none are passed, defaults are assumed. """ if isinstance(in_gtr, str): self._gtr = GTR.standard(model=in_gtr, **kwargs) self._gtr.logger = self.logger elif isinstance(in_gtr, (GTR, GTR_site_specific)): self._gtr = in_gtr self._gtr.logger=self.logger else: self.logger("TreeAnc.gtr_setter: can't interpret GTR model", 1, warn=True) raise TypeError("Cannot set GTR model in TreeAnc class: GTR or " "string expected") if self._gtr.ambiguous is None: self.fill_overhangs=False
@property def aln(self): ''' :setter: Sets the alignment :getter: Returns the alignment ''' return self.data.aln @aln.setter def aln(self,in_aln): self.data.aln=in_aln if self.tree: self._check_alignment_tree_gtr_consistency() @property def tree(self): """ The phylogenetic tree currently used by the TreeAnc. :setter: Sets the tree. Directly if passed as Phylo.Tree, or by reading from \ file if passed as a str. :getter: Returns the tree as a Phylo.Tree object """ return self._tree @tree.setter def tree(self, in_tree): ''' assigns a tree to the internal self._tree variable. The tree is either loaded from file (if in_tree is str) or assigned (if in_tree is a Phylo.tree) ''' from os.path import isfile self._tree = None if isinstance(in_tree, Phylo.BaseTree.Tree): self._tree = in_tree elif type(in_tree) in string_types and isfile(in_tree): try: self._tree=Phylo.read(in_tree, 'newick') except: fmt = in_tree.split('.')[-1] if fmt in ['nexus', 'nex']: self._tree=Phylo.read(in_tree, 'nexus') else: raise MissingDataError('TreeAnc: could not load tree, format needs to be nexus or newick! input was '+str(in_tree)) else: raise MissingDataError('TreeAnc: could not load tree! input was '+str(in_tree)) if self._tree.count_terminals()<3: raise MissingDataError('TreeAnc: tree in %s as only %d tips. Please check your tree!'%(str(in_tree), self._tree.count_terminals())) # remove all existing sequence attributes branch_length_warning = False for node in self._tree.find_clades(): node.branch_length = node.branch_length if node.branch_length else 0.0 if node.branch_length > ttconf.MAX_BRANCH_LENGTH: branch_length_warning = True if hasattr(node, "_cseq"): node.__delattr__("_cseq") node.original_length = node.branch_length node.mutation_length = node.branch_length if branch_length_warning: self.logger("WARNING: TreeTime has detected branches that are longer than %d. " "TreeTime requires trees where branch length is in units of average number " "of nucleotide or protein substitutions per site. " "Use on trees with longer branches is not recommended for ancestral sequence reconstruction."%(ttconf.MAX_BRANCH_LENGTH), 0, warn=True) self.prepare_tree() if self.data: self._check_alignment_tree_gtr_consistency() return ttconf.SUCCESS @property def one_mutation(self): """ Returns ------- float inverse of the uncompressed sequence length - length scale for short branches """ return 1.0/self.data.full_length if self.data.full_length else np.nan @one_mutation.setter def one_mutation(self,om): self.logger("TreeAnc: one_mutation can't be set",1) @property def seq_len(self): return self.data.full_length @property def sequence_length(self): return self.data.full_length def _check_alignment_tree_gtr_consistency(self): ''' For each node of the tree, check whether there is a sequence available in the alignment and assign this sequence as a character array ''' if len(self.tree.get_terminals()) != len(self.data.aln): self.logger(f"**WARNING: Number of tips in tree ({len(self.tree.get_terminals())}) differs from number of sequences in alignment ({len(self.data.aln)})**", 3, warn=True) failed_leaves= 0 # loop over leaves and assign multiplicities of leaves (e.g. number of identical reads) for l in self.tree.get_terminals(): if l.name in self.data.seq_multiplicity: l.count = self.data.seq_multiplicity[l.name] else: l.count = 1.0 # loop over tree, and assign sequences for l in self.tree.find_clades(): if hasattr(l, 'branch_state'): del l.branch_state if l.name not in self.data.compressed_alignment and l.is_terminal(): self.logger("***WARNING: TreeAnc._check_alignment_tree_gtr_consistency: NO SEQUENCE FOR LEAF: '%s'" % l.name, 0, warn=True) failed_leaves += 1 if not self.ignore_missing_alns and failed_leaves > self.tree.count_terminals()/3: raise MissingDataError("TreeAnc._check_alignment_tree_gtr_consistency: At least 30\\% terminal nodes cannot be assigned a sequence!\n" "Are you sure the alignment belongs to the tree?") else: # could not assign sequence for internal node - is OK pass if failed_leaves: self.logger("***WARNING: TreeAnc: %d nodes don't have a matching sequence in the alignment." " POSSIBLE ERROR."%failed_leaves, 0, warn=True) # extend profile to contain additional unknown characters extend_profile(self.gtr, [self.data.ref] if self.data.is_sparse else self.data.aln.values(), logger=self.logger) self.ok = True
[docs] def prepare_tree(self): """ Set link to parent and calculate distance to root for all tree nodes. Should be run once the tree is read and after every rerooting, topology change or branch length optimizations. """ self.sequence_reconstruction = False self.tree.root.branch_length = 0.001 self.tree.root.mask = None self.tree.root.mutation_length = self.tree.root.branch_length if not self.keep_node_order: self.tree.ladderize() self._prepare_nodes() self._leaves_lookup = {node.name:node for node in self.tree.get_terminals()}
def _prepare_nodes(self): """ Set auxilliary parameters to every node of the tree. """ self.tree.root.up = None self.tree.root.tt = self self.tree.root.bad_branch=self.tree.root.bad_branch if hasattr(self.tree.root, 'bad_branch') else False name_set = {n.name for n in self.tree.find_clades() if n.name} internal_node_count = 0 for clade in self.tree.get_nonterminals(order='preorder'): # parents first if clade.name is None: tmp = "NODE_" + format(internal_node_count, '07d') while tmp in name_set: internal_node_count += 1 tmp = "NODE_" + format(internal_node_count, '07d') clade.name = tmp name_set.add(clade.name) internal_node_count+=1 for c in clade.clades: c.up = clade c.tt = self for clade in self.tree.find_clades(order='postorder'): # children first if clade.is_terminal(): clade.bad_branch = clade.bad_branch if hasattr(clade, 'bad_branch') else False else: clade.bad_branch = all([c.bad_branch for c in clade]) if not hasattr(clade, "mask"): clade.mask = None self._calc_dist2root() self._internal_node_count = max(internal_node_count, self._internal_node_count) def _calc_dist2root(self): """ For each node in the tree, set its root-to-node distance as dist2root attribute """ self.tree.root.dist2root = 0.0 for clade in self.tree.get_nonterminals(order='preorder'): # parents first for c in clade.clades: c.dist2root = clade.dist2root + c.mutation_length #################################################################### ## END SET-UP #################################################################### ################################################################### ### ancestral reconstruction ################################################################### def reconstruct_anc(self,*args, **kwargs): """Shortcut for :py:meth:`treetime.TreeAnc.infer_ancestral_sequences` """ return self.infer_ancestral_sequences(*args,**kwargs)
[docs] def infer_ancestral_sequences(self, method='probabilistic', infer_gtr=False, marginal=False, reconstruct_tip_states=False, **kwargs): """Reconstruct ancestral sequences Parameters ---------- method : str Method to use. Supported values are "parsimony", "fitch", "probabilistic" and "ml" infer_gtr : bool Infer a GTR model before reconstructing the sequences marginal : bool Assign sequences that are most likely after averaging over all other nodes instead of the jointly most likely sequences. reconstruct_tip_states : bool, optional Reconstruct sequences of terminal nodes/leaves, thereby replacing ambiguous characters with the inferred base/state. default: False **kwargs additional keyword arguments that are passed down to :py:meth:`TreeAnc.infer_gtr` and :py:meth:`TreeAnc._ml_anc` Returns ------- N_diff : int Number of nucleotides different from the previous reconstruction. If there were no pre-set sequences, returns N*L """ if not self.ok: raise MissingDataError("TreeAnc.infer_ancestral_sequences: ERROR, sequences or tree are missing") self.logger("TreeAnc.infer_ancestral_sequences with method: %s, %s"%(method, 'marginal' if marginal else 'joint'), 1) if method.lower() in ['ml', 'probabilistic']: if marginal: _ml_anc = self._ml_anc_marginal else: _ml_anc = self._ml_anc_joint elif method.lower() in ['fitch', 'parsimony']: _ml_anc = self._fitch_anc else: raise UnknownMethodError("Reconstruction method needs to be in ['ml', 'probabilistic', 'fitch', 'parsimony'], got '{}'".format(method)) if infer_gtr: self.infer_gtr(marginal=marginal, **kwargs) N_diff = _ml_anc(reconstruct_tip_states=reconstruct_tip_states, **kwargs) else: N_diff = _ml_anc(reconstruct_tip_states=reconstruct_tip_states, **kwargs) return N_diff
################################################################### ### FITCH ################################################################### def _fitch_anc(self, **kwargs): """ Reconstruct ancestral states using Fitch's algorithm. It implements the iteration from leaves to the root constructing the Fitch profiles for each character of the sequence, and then by propagating from the root to the leaves, reconstructs the sequences of the internal nodes. Keyword Args ------------ Returns ------- Ndiff : int Number of the characters that changed since the previous reconstruction. These changes are determined from the pre-set sequence attributes of the nodes. If there are no sequences available (i.e., no reconstruction has been made before), returns the total number of characters in the tree. """ # set fitch profiiles to each terminal node for l in self.tree.get_terminals(): l.state = [[k] for k in l.cseq] L = self.data.compressed_length self.logger("TreeAnc._fitch_anc: Walking up the tree, creating the Fitch profiles",2) for node in self.tree.get_nonterminals(order='postorder'): node.state = [self._fitch_state(node, k) for k in range(L)] ambs = [i for i in range(L) if len(self.tree.root.state[i])>1] if len(ambs) > 0: for amb in ambs: self.logger("Ambiguous state of the root sequence " "in the position %d: %s, " "choosing %s" % (amb, str(self.tree.root.state[amb]), self.tree.root.state[amb][0]), 4) self.tree.root._cseq = np.array([k[self.rng.randint(len(k)) if len(k)>1 else 0] for k in self.tree.root.state]) self.logger("TreeAnc._fitch_anc: Walking down the self.tree, generating sequences from the " "Fitch profiles.", 2) N_diff = 0 for node in self.tree.get_nonterminals(order='preorder'): if node.up != None: # not root sequence = np.array([node.up._cseq[i] if node.up._cseq[i] in node.state[i] else node.state[i][0] for i in range(L)]) if self.sequence_reconstruction: N_diff += (sequence!=node.cseq).sum() else: N_diff += L node._cseq = sequence del node.state # no need to store Fitch states self.sequence_reconstruction = 'parsimony' self.logger("Done ancestral state reconstruction",3) return N_diff def _fitch_state(self, node, pos): """ Determine the Fitch profile for a single character of the node's sequence. The profile is essentially the intersection between the children's profiles or, if the former is empty, the union of the profiles. Parameters ---------- node : PhyloTree.Clade: Internal node which the profiles are to be determined pos : int Position in the node's sequence which the profiles should be determinedf for. Returns ------- state : numpy.array Fitch profile for the character at position pos of the given node. """ state = self._fitch_intersect([k.state[pos] for k in node.clades]) if len(state) == 0: state = np.concatenate([k.state[pos] for k in node.clades]) return state def _fitch_intersect(self, arrays): """ Find the intersection of any number of 1D arrays. Return the sorted, unique values that are in all of the input arrays. Adapted from numpy.lib.arraysetops.intersect1d """ def pairwise_intersect(arr1, arr2): s2 = set(arr2) b3 = [val for val in arr1 if val in s2] return b3 arrays = list(arrays) # allow assignment N = len(arrays) while N > 1: arr1 = arrays.pop() arr2 = arrays.pop() arr = pairwise_intersect(arr1, arr2) arrays.append(arr) N = len(arrays) return arrays[0] ################################################################### ### Maximum Likelihood ###################################################################
[docs] def sequence_LH(self, pos=None, full_sequence=False): """return the likelihood of the observed sequences given the tree Parameters ---------- pos : int, optional position in the sequence, if none, the sum over all positions will be returned full_sequence : bool, optional does the position refer to the full or compressed sequence, by default compressed sequence is assumed. Returns ------- float likelihood """ if not hasattr(self.tree, "total_sequence_LH"): self.logger("TreeAnc.sequence_LH: you need to run marginal ancestral inference first!", 1) self.infer_ancestral_sequences(marginal=True) if pos is not None: if full_sequence: compressed_pos = self.data.full_to_compressed_sequence_map[pos] else: compressed_pos = pos return self.tree.sequence_LH[compressed_pos] else: return self.tree.total_sequence_LH
def ancestral_likelihood(self): """ Calculate the likelihood of the given realization of the sequences in the tree Returns ------- log_lh : float The tree likelihood given the sequences """ log_lh = np.zeros(self.data.multiplicity().shape[0]) for node in self.tree.find_clades(order='postorder'): if node.up is None: # root node # 0-1 profile profile = seq2prof(node.cseq, self.gtr.profile_map) # get the probabilities to observe each nucleotide profile *= self.gtr.Pi profile = profile.sum(axis=1) log_lh += np.log(profile) # product over all characters continue t = node.branch_length indices = np.array([(self.gtr.state_index[a], self.gtr.state_index[b]) for a, b in zip(node.up.cseq, node.cseq)]) logQt = np.log(self.gtr.expQt(t)) lh = logQt[indices[:, 1], indices[:, 0]] log_lh += lh return log_lh def _branch_length_to_gtr(self, node): """ Set branch lengths to either mutation lengths of given branch lengths. The assigend values are to be used in the following ML analysis. """ if self.use_mutation_length: return max(ttconf.MIN_BRANCH_LENGTH*self.one_mutation, node.mutation_length) else: return max(ttconf.MIN_BRANCH_LENGTH*self.one_mutation, node.branch_length) def _ml_anc_marginal(self, sample_from_profile=False, reconstruct_tip_states=False, debug=False, **kwargs): """ Perform marginal ML reconstruction of the ancestral states. In contrast to joint reconstructions, this needs to access the probabilities rather than only log probabilities and is hence handled by a separate function. Parameters ---------- sample_from_profile : bool or str assign sequences probabilistically according to the inferred probabilities of ancestral states instead of to their ML value. This parameter can also take the value 'root' in which case probabilistic sampling will happen at the root but at no other node. reconstruct_tip_states : bool, default False reconstruct sequence assigned to leaves, will replace ambiguous characters with the most likely definite character. Note that this will affect the mutations assigned to branches. """ self.logger("TreeAnc._ml_anc_marginal: type of reconstruction: Marginal", 2) self.postorder_traversal_marginal() # choose sequence characters from this profile. # treat root node differently to avoid piling up mutations on the longer branch if sample_from_profile=='root': root_sample_from_profile = True other_sample_from_profile = False elif isinstance(sample_from_profile, bool): root_sample_from_profile = sample_from_profile other_sample_from_profile = sample_from_profile self.total_LH_and_root_sequence(sample_from_profile=root_sample_from_profile, assign_sequence=True) N_diff = self.preorder_traversal_marginal(reconstruct_tip_states=reconstruct_tip_states, sample_from_profile=other_sample_from_profile, assign_sequence=True) self.logger("TreeAnc._ml_anc_marginal: ...done", 3) self.reconstructed_tip_sequences = reconstruct_tip_states # do clean-up: if not debug: for node in self.tree.find_clades(): try: del node.marginal_log_Lx del node.marginal_subtree_LH_prefactor except: pass gc.collect() self.sequence_reconstruction = 'marginal' return N_diff def total_LH_and_root_sequence(self, sample_from_profile=False, assign_sequence=False): self.logger("Computing root node sequence and total tree likelihood...",3) # Msg to the root from the distant part (equ frequencies) if len(self.gtr.Pi.shape)==1: self.tree.root.marginal_outgroup_LH = np.repeat([self.gtr.Pi], self.data.compressed_length, axis=0) else: self.tree.root.marginal_outgroup_LH = np.copy(self.gtr.Pi.T) self.tree.root.marginal_profile, pre = normalize_profile(self.tree.root.marginal_outgroup_LH*self.tree.root.marginal_subtree_LH) marginal_LH_prefactor = self.tree.root.marginal_subtree_LH_prefactor + pre self.tree.sequence_LH = marginal_LH_prefactor self.tree.total_sequence_LH = (self.tree.sequence_LH*self.data.multiplicity()).sum() self.tree.sequence_marginal_LH = self.tree.total_sequence_LH if assign_sequence: seq, prof_vals, idxs = prof2seq(self.tree.root.marginal_profile, self.gtr, sample_from_prof=sample_from_profile, normalize=False, rng=self.rng) self.tree.root._cseq = seq def postorder_traversal_marginal(self): L = self.data.compressed_length n_states = self.gtr.alphabet.shape[0] self.logger("Attaching sequence profiles to leafs... ", 3) # set the leaves profiles. This doesn't ever need to be reassigned for leaves for leaf in self.tree.get_terminals(): if not hasattr(leaf, "marginal_subtree_LH"): if leaf.name in self.data.compressed_alignment: leaf.marginal_subtree_LH = seq2prof(self.data.compressed_alignment[leaf.name], self.gtr.profile_map) else: leaf.marginal_subtree_LH = np.ones((L, n_states)) if not hasattr(leaf, "marginal_subtree_LH_prefactor"): leaf.marginal_subtree_LH_prefactor = np.zeros(L) self.logger("Postorder: computing likelihoods... ", 3) # propagate leaves --> root, set the marginal-likelihood messages for node in self.tree.get_nonterminals(order='postorder'): #leaves -> root # regardless of what was before, set the profile to ones tmp_log_subtree_LH = np.zeros((L,n_states), dtype=float) node.marginal_subtree_LH_prefactor = np.zeros(L, dtype=float) for ch in node.clades: if ch.mask is None: ch.marginal_log_Lx = self.gtr.propagate_profile(ch.marginal_subtree_LH, self._branch_length_to_gtr(ch), return_log=True) # raw prob to transfer prob up else: ch.marginal_log_Lx = (self.gtr.propagate_profile(ch.marginal_subtree_LH, self._branch_length_to_gtr(ch), return_log=True).T*ch.mask).T # raw prob to transfer prob up tmp_log_subtree_LH += ch.marginal_log_Lx node.marginal_subtree_LH_prefactor += ch.marginal_subtree_LH_prefactor node.marginal_subtree_LH, offset = normalize_profile(tmp_log_subtree_LH, log=True) node.marginal_subtree_LH_prefactor += offset # and store log-prefactor def preorder_traversal_marginal(self, reconstruct_tip_states=False, sample_from_profile=False, assign_sequence=False): self.logger("Preorder: computing marginal profiles...",3) # propagate root -->> leaves, reconstruct the internal node sequences # provided the upstream message + the message from the complementary subtree N_diff = 0 for node in self.tree.find_clades(order='preorder'): if node.up is None: # skip if node is root continue if hasattr(node, 'branch_state'): del node.branch_state # integrate the information coming from parents with the information # of all children my multiplying it to the prev computed profile node.marginal_outgroup_LH, pre = normalize_profile(np.log(np.maximum(ttconf.TINY_NUMBER, node.up.marginal_profile)) - node.marginal_log_Lx, log=True, return_offset=False) if node.is_terminal() and (not reconstruct_tip_states): # skip remainder unless leaves are to be reconstructed continue tmp_msg_from_parent = self.gtr.evolve(node.marginal_outgroup_LH, self._branch_length_to_gtr(node), return_log=False) if node.mask is None: node.marginal_profile, pre = normalize_profile(node.marginal_subtree_LH * tmp_msg_from_parent, return_offset=False) else: node.marginal_profile, pre = normalize_profile(node.marginal_subtree_LH * (node.mask*tmp_msg_from_parent.T + (1.0-node.mask)).T, return_offset=False) # choose sequence based maximal marginal LH. if assign_sequence: seq, prof_vals, idxs = prof2seq(node.marginal_profile, self.gtr, sample_from_prof=sample_from_profile, normalize=False, rng=self.rng) if self.sequence_reconstruction: N_diff += (seq!=node.cseq).sum() else: N_diff += self.data.compressed_length #assign new sequence node._cseq = seq return N_diff def _ml_anc_joint(self, sample_from_profile=False, reconstruct_tip_states=False, debug=False, **kwargs): """ Perform joint ML reconstruction of the ancestral states. In contrast to marginal reconstructions, this only needs to compare and multiply LH and can hence operate in log space. Parameters ---------- sample_from_profile : str This parameter can take the value 'root' in which case probabilistic sampling will happen at the root. otherwise sequences at ALL nodes are set to the value that jointly optimized the likelihood. reconstruct_tip_states : bool, default False reconstruct sequence assigned to leaves, will replace ambiguous characters with the most likely definite character. Note that this will affect the mutations assigned to branches. """ N_diff = 0 # number of sites differ from perv reconstruction L = self.data.compressed_length n_states = self.gtr.alphabet.shape[0] self.logger("TreeAnc._ml_anc_joint: type of reconstruction: Joint", 2) self.logger("TreeAnc._ml_anc_joint: Walking up the tree, computing likelihoods... ", 3) # for the internal nodes, scan over all states j of this node, maximize the likelihood for node in self.tree.find_clades(order='postorder'): if hasattr(node, 'branch_state'): del node.branch_state if node.up is None: node.joint_Cx=None # not needed for root continue branch_len = self._branch_length_to_gtr(node) # transition matrix from parent states to the current node states. # denoted as Pij(i), where j - parent state, i - node state log_transitions = np.log(np.maximum(ttconf.TINY_NUMBER, self.gtr.expQt(branch_len))) if node.is_terminal(): if node.name in self.data.compressed_alignment: tmp_prof = seq2prof(self.data.compressed_alignment[node.name], self.gtr.profile_map) msg_from_children = np.log(np.maximum(tmp_prof, ttconf.TINY_NUMBER)) else: msg_from_children = np.zeros((L, n_states)) msg_from_children[np.isnan(msg_from_children) | np.isinf(msg_from_children)] = -ttconf.BIG_NUMBER else: # Product (sum-Log) over all child subtree likelihoods. # this is prod_ch L_x(i) msg_from_children = np.sum(np.stack([c.joint_Lx for c in node.clades], axis=0), axis=0) if not debug: # Now that we have calculated the current node's likelihood # from its children, clean up likelihood matrices attached # to children to save memory. for c in node.clades: del c.joint_Lx # for every possible state of the parent node, # get the best state of the current node # and compute the likelihood of this state # preallocate storage node.joint_Lx = np.zeros((L, n_states)) # likelihood array node.joint_Cx = np.zeros((L, n_states), dtype=np.uint16) # max LH indices for char_i, char in enumerate(self.gtr.alphabet): # Pij(i) * L_ch(i) for given parent state j # if the node has a mask, P_ij is uniformly 1 at masked positions as no info is propagated if node.mask is None: msg_to_parent = (log_transitions[:,char_i].T + msg_from_children) else: msg_to_parent = ((log_transitions[:,char_i]*np.repeat([node.mask], self.gtr.n_states, axis=0).T) + msg_from_children) # For this parent state, choose the best state of the current node node.joint_Cx[:, char_i] = msg_to_parent.argmax(axis=1) # and compute the likelihood of the best state of the current node # given the state of the parent (char_i) -- at masked position, there is no contribution node.joint_Lx[:, char_i] = msg_to_parent.max(axis=1) if node.mask is not None: node.joint_Lx[:, char_i] *= node.mask # root node profile = likelihood of the total tree msg_from_children = np.sum(np.stack([c.joint_Lx for c in self.tree.root], axis = 0), axis=0) # Pi(i) * Prod_ch Lch(i) self.tree.root.joint_Lx = msg_from_children + np.log(self.gtr.Pi).T normalized_profile = (self.tree.root.joint_Lx.T - self.tree.root.joint_Lx.max(axis=1)).T # choose sequence characters from this profile. # treat root node differently to avoid piling up mutations on the longer branch if sample_from_profile=='root': root_sample_from_profile = True elif isinstance(sample_from_profile, bool): root_sample_from_profile = sample_from_profile seq, anc_lh_vals, idxs = prof2seq(np.exp(normalized_profile), self.gtr, sample_from_prof = root_sample_from_profile, rng=self.rng) # compute the likelihood of the most probable root sequence self.tree.sequence_LH = np.choose(idxs, self.tree.root.joint_Lx.T) self.tree.sequence_joint_LH = (self.tree.sequence_LH*self.data.multiplicity()).sum() self.tree.root._cseq = seq self.tree.root.seq_idx = idxs self.logger("TreeAnc._ml_anc_joint: Walking down the tree, computing maximum likelihood sequences...",3) # for each node, resolve the conditioning on the parent node nodes_to_reconstruct = self.tree.get_nonterminals(order='preorder') if reconstruct_tip_states: nodes_to_reconstruct += self.tree.get_terminals() #TODO: Should we add tips without sequence here? for node in nodes_to_reconstruct: # root node has no mutations, everything else has been already set if node.up is None: continue # choose the value of the Cx(i), corresponding to the state of the # parent node i. This is the state of the current node node.seq_idx = np.choose(node.up.seq_idx, node.joint_Cx.T) # reconstruct seq, etc tmp_sequence = np.choose(node.seq_idx, self.gtr.alphabet) if self.sequence_reconstruction: N_diff += (tmp_sequence!=node.cseq).sum() else: N_diff += L node._cseq = tmp_sequence self.logger("TreeAnc._ml_anc_joint: ...done", 3) self.reconstructed_tip_sequences = reconstruct_tip_states # do clean-up if not debug: for node in self.tree.find_clades(order='preorder'): # Check for the likelihood matrix, since we might have cleaned # it up earlier. if hasattr(node, "joint_Lx"): del node.joint_Lx del node.joint_Cx if hasattr(node, 'seq_idx'): del node.seq_idx self.sequence_reconstruction = 'joint' return N_diff ############################################################### ### sequence and mutation storing ############################################################### def get_branch_mutation_matrix(self, node, full_sequence=False): """uses results from marginal ancestral inference to return a joint distribution of the sequence states at both ends of the branch. Parameters ---------- node : Phylo.clade node of the tree full_sequence : bool, optional expand the sequence to the full sequence, if false (default) the there will be one mutation matrix for each column in the compressed alignment Returns ------- numpy.array an Lxqxq stack of matrices (q=alphabet size, L (compressed)sequence length) """ pp,pc = self.marginal_branch_profile(node) # calculate pc_i [e^Qt]_ij pp_j for each site expQt = self.gtr.expQt(self._branch_length_to_gtr(node)) + ttconf.SUPERTINY_NUMBER if len(expQt.shape)==3: # site specific model mut_matrix_stack = np.einsum('ai,aj,ija->aij', pc, pp, expQt) else: mut_matrix_stack = np.einsum('ai,aj,ij->aij', pc, pp, expQt) # normalize this distribution normalizer = mut_matrix_stack.sum(axis=2).sum(axis=1) mut_matrix_stack = np.einsum('aij,a->aij', mut_matrix_stack, 1.0/normalizer) # expand to full sequence if requested if full_sequence: return mut_matrix_stack[self.data.full_to_compressed_sequence_map] else: return mut_matrix_stack def marginal_branch_profile(self, node): ''' calculate the marginal distribution of sequence states on both ends of the branch leading to node, Parameters ---------- node : PhyloTree.Clade TreeNode, attached to the branch. Returns ------- pp, pc : Pair of vectors (profile parent, pp) and (profile child, pc) that are of shape (L,n) where L is sequence length and n is alphabet size. note that this correspond to the compressed sequences. ''' parent = node.up if parent is None: raise Exception("Branch profiles can't be calculated for the root!") if not hasattr(node, 'marginal_outgroup_LH'): raise Exception("marginal ancestral inference needs to be performed first!") pc = node.marginal_subtree_LH pp = node.marginal_outgroup_LH return pp, pc def add_branch_state(self, node): """add a dictionary to the node containing tuples of state pairs and a list of their number across the branch Parameters ---------- node : tree.node attaces attribute :branch_state: """ seq_pairs, multiplicity = self.gtr.state_pair( node.up.cseq, node.cseq, pattern_multiplicity = self.data.multiplicity(mask=node.mask), ignore_gaps = self.ignore_gaps) node.branch_state = {'pair':seq_pairs, 'multiplicity':multiplicity} ################################################################### ### Branch length optimization ################################################################### def optimize_branch_len(self, **kwargs): """Deprecated in favor of 'optimize_branch_lengths_joint'""" return self.optimize_branch_lengths_joint(**kwargs) def optimize_branch_len_joint(self, **kwargs): """Deprecated in favor of 'optimize_branch_lengths_joint'""" return self.optimize_branch_lengths_joint(**kwargs) def optimize_branch_lengths_joint(self, **kwargs): """ Perform optimization for the branch lengths of the entire tree. This method only does a single path and needs to be iterated. **Note** this method assumes that each node stores information about its sequence as numpy.array object (node.sequence attribute). Therefore, before calling this method, sequence reconstruction with either of the available models must be performed. Parameters ---------- **kwargs : Keyword arguments Keyword Args ------------ store_old : bool If True, the old lengths will be saved in :code:`node._old_dist` attribute. Useful for testing, and special post-processing. """ self.logger("TreeAnc.optimize_branch_length: running branch length optimization using jointML ancestral sequences",1) if (self.tree is None) or (self.data.aln is None): raise MissingDataError("TreeAnc.optimize_branch_length: ERROR, alignment or tree are missing.") store_old_dist = kwargs['store_old'] if 'store_old' in kwargs else False max_bl = 0 for node in self.tree.find_clades(order='postorder'): if node.up is None: continue # this is the root if store_old_dist: node._old_length = node.branch_length new_len = max(0,self.optimal_branch_length(node)) self.logger("Optimization results: old_len=%.4e, new_len=%.4e" " Updating branch length..."%(node.branch_length, new_len), 5) node.branch_length = new_len node.mutation_length=new_len max_bl = max(max_bl, new_len) if max_bl>0.15: self.logger("TreeAnc.optimize_branch_lengths_joint: THIS TREE HAS LONG BRANCHES." " \n\t ****TreeTime's JOINT IS NOT DESIGNED TO OPTIMIZE LONG BRANCHES." " \n\t ****PLEASE OPTIMIZE BRANCHES USING: " " \n\t ****branch_length_mode='input' or 'marginal'", 0, warn=True) # as branch lengths changed, the distance to root etc need to be recalculated self.tree.root.up = None self.tree.root.dist2root = 0.0 self._prepare_nodes() return ttconf.SUCCESS def optimal_branch_length(self, node): ''' Calculate optimal branch length given the sequences of node and parent Parameters ---------- node : PhyloTree.Clade TreeNode, attached to the branch. Returns ------- new_len : float Optimal length of the given branch ''' if node.up is None: return self.one_mutation if not hasattr(node, 'branch_state'): if node.cseq is None and node.is_terminal(): raise MissingDataError("TreeAnc.optimal_branch_length: terminal node alignments required; sequence is missing for leaf: '%s'. " "Missing terminal sequences can be inferred from sister nodes by rerunning with `reconstruct_tip_states=True` or `--reconstruct-tip-states`" % node.name) self.add_branch_state(node) return self.gtr.optimal_t_compressed(node.branch_state['pair'], node.branch_state['multiplicity']) def optimal_marginal_branch_length(self, node, tol=1e-10): ''' calculate the marginal distribution of sequence states on both ends of the branch leading to node, Parameters ---------- node : PhyloTree.Clade TreeNode, attached to the branch. Returns ------- branch_length : float branch length of the branch leading to the node. note: this can be unstable on iteration ''' if node.up is None: return self.one_mutation else: pp, pc = self.marginal_branch_profile(node) return self.gtr.optimal_t_compressed((pp, pc), self.data.multiplicity(mask=node.mask), profiles=True, tol=tol) def optimize_tree_marginal(self, max_iter=10, infer_gtr=False, pc=1.0, damping=0.75, LHtol=0.1, site_specific_gtr=False, **kwargs): self.infer_ancestral_sequences(marginal=True, **kwargs) oldLH = self.sequence_LH() self.logger("TreeAnc.optimize_tree_marginal: initial, LH=%1.2f, total branch_length %1.4f"% (oldLH, self.tree.total_branch_length()), 2) for i in range(max_iter): if infer_gtr: self.infer_gtr(site_specific=site_specific_gtr, marginal=True, normalized_rate=True, pc=pc) self.infer_ancestral_sequences(marginal=True, **kwargs) old_bl = self.tree.total_branch_length() tol = 1e-8 + 0.01**(i+1) for n in self.tree.find_clades(): if n.up is None: continue if n.up.up is None and len(n.up.clades)==2: # children of a bifurcating root! n1, n2 = n.up.clades total_bl = n1.branch_length+n2.branch_length bl_ratio = n1.branch_length/total_bl prof_c = n1.marginal_subtree_LH prof_p = normalize_profile(n2.marginal_subtree_LH*self.tree.root.marginal_outgroup_LH)[0] if n1.mask is None or n2.mask is None: new_bl = self.gtr.optimal_t_compressed((prof_p, prof_c), self.data.multiplicity(), profiles=True, tol=tol) else: new_bl = self.gtr.optimal_t_compressed((prof_p, prof_c), self.data.multiplicity(mask=n1.mask*n2.mask), profiles=True, tol=tol) update_val = new_bl*(1-damping**(i+1)) + total_bl*damping**(i+1) n1.branch_length = update_val*bl_ratio n2.branch_length = update_val*(1-bl_ratio) n1.mutation_length = n1.branch_length n2.mutation_length = n2.branch_length else: new_val = self.optimal_marginal_branch_length(n, tol=tol) update_val = new_val*(1-damping**(i+1)) + n.branch_length*damping**(i+1) n.branch_length = update_val n.mutation_length = n.branch_length self.infer_ancestral_sequences(marginal=True, **kwargs) LH = self.sequence_LH() deltaLH = LH - oldLH oldLH = LH dbl = self.tree.total_branch_length() - old_bl self.logger("TreeAnc.optimize_tree_marginal: iteration %d, LH=%1.2f (%1.2f), delta branch_length=%1.4f, total branch_length %1.4f"% (i, LH, deltaLH, dbl, self.tree.total_branch_length()), 2) if deltaLH<LHtol: self.logger("TreeAnc.optimize_tree_marginal: deltaLH=%f, stopping iteration."%deltaLH,1) break return ttconf.SUCCESS def optimize_sequences_and_branch_length(self,*args, **kwargs): """This method is a shortcut for :py:meth:`treetime.TreeAnc.optimize_tree` Deprecated in favor of 'optimize_tree' """ self.logger("Deprecation warning: 'optimize_sequences_and_branch_length' will be removed and replaced by 'optimize_tree'!", 1, warn=True) self.optimize_tree(*args,**kwargs) def optimize_seq_and_branch_len(self,*args, **kwargs): """This method is a shortcut for :py:meth:`treetime.TreeAnc.optimize_tree` Deprecated in favor of 'optimize_tree' """ self.logger("Deprecation warning: 'optimize_seq_and_branch_len' will be removed and replaced by 'optimize_tree'!", 1, warn=True) self.optimize_tree(*args,**kwargs)
[docs] def optimize_tree(self,prune_short=True, marginal_sequences=False, branch_length_mode='joint', max_iter=5, infer_gtr=False, pc=1.0, method_anc='probabilistic', **kwargs): """ Iteratively set branch lengths and reconstruct ancestral sequences until the values of either former or latter do not change. The algorithm assumes knowing only the topology of the tree, and requires that sequences are assigned to all leaves of the tree. The first step is to pre-reconstruct ancestral states using Fitch reconstruction algorithm or ML using existing branch length estimates. Then, optimize branch lengths and re-do reconstruction until convergence using ML method. Parameters ----------- prune_short : bool If True, the branches with zero optimal length will be pruned from the tree, creating polytomies. The polytomies could be further processed using :py:meth:`treetime.TreeTime.resolve_polytomies` from the TreeTime class. marginal_sequences : bool Assign sequences to their marginally most likely value, rather than the values that are jointly most likely across all nodes. branch_length_mode : str 'joint', 'marginal', or 'input'. Branch lengths are left unchanged in case of 'input'. 'joint' and 'marginal' cause branch length optimization while setting sequences to the ML value or tracing over all possible internal sequence states. max_iter : int Maximal number of times sequence and branch length iteration are optimized infer_gtr : bool Infer a GTR model from the observed substitutions. method_anc: str Which method should be used to reconstruct ancestral sequences. Supported values are "parsimony", "fitch", "probabilistic" and "ml" """ if branch_length_mode=='marginal': self.optimize_tree_marginal(max_iter=max_iter, infer_gtr=infer_gtr, pc=pc, **kwargs) if prune_short: self.prune_short_branches() return ttconf.SUCCESS elif branch_length_mode=='input': N_diff = self.reconstruct_anc(method=method_anc, infer_gtr=infer_gtr, pc=pc, marginal=marginal_sequences, **kwargs) if prune_short: self.prune_short_branches() return ttconf.SUCCESS elif branch_length_mode!='joint': raise UnknownMethodError("TreeAnc.optimize_tree: `branch_length_mode` should be in ['marginal', 'joint', 'input']") self.logger("TreeAnc.optimize_tree: sequences...", 1) N_diff = self.reconstruct_anc(method=method_anc, infer_gtr=infer_gtr, pc=pc, marginal=marginal_sequences, **kwargs) self.optimize_branch_lengths_joint(store_old=False) n = 0 while n<max_iter: n += 1 if prune_short: self.prune_short_branches() N_diff = self.reconstruct_anc(method=method_anc, infer_gtr=False, marginal=marginal_sequences, **kwargs) self.logger("TreeAnc.optimize_tree: Iteration %d." " #Nuc changed since prev reconstructions: %d" %(n, N_diff), 2) if N_diff < 1: break self.optimize_branch_lengths_joint(store_old=False) self.tree.unconstrained_sequence_LH = (self.tree.sequence_LH*self.data.multiplicity()).sum() self._prepare_nodes() # fix dist2root and up-links after reconstruction self.logger("TreeAnc.optimize_tree: Unconstrained sequence LH:%f" % self.tree.unconstrained_sequence_LH , 2) return ttconf.SUCCESS
[docs] def prune_short_branches(self): """ If the branch length is less than the minimal value, remove the branch from the tree. **Requires** ancestral sequence reconstruction """ self.logger("TreeAnc.prune_short_branches: pruning short branches (max prob at zero)...", 1) for node in self.tree.find_clades(): if node.up is None or node.is_terminal(): continue # probability of the two seqs separated by zero time is not zero if ((node.branch_length<0.1*self.one_mutation) and (self.gtr.prob_t(node.up._cseq, node._cseq, 0.0, pattern_multiplicity=self.data.multiplicity(mask=node.mask)) > 0.1)): # re-assign the node children directly to its parent node.up.clades = [k for k in node.up.clades if k != node] + node.clades for clade in node.clades: clade.up = node.up
##################################################################### ## GTR INFERENCE #####################################################################
[docs] def infer_gtr(self, marginal=False, site_specific=False, normalized_rate=True, fixed_pi=None, pc=5.0, **kwargs): """ Calculates a GTR model given the multiple sequence alignment and the tree. It performs ancestral sequence inferrence (joint or marginal), followed by the branch lengths optimization. Then, the numbers of mutations are counted in the optimal tree and related to the time within the mutation happened. From these statistics, the relative state transition probabilities are inferred, and the transition matrix is computed. The result is used to construct the new GTR model of type 'custom'. The model is assigned to the TreeAnc and is used in subsequent analysis. Parameters ----------- print_raw : bool If True, print the inferred GTR model marginal : bool If True, use marginal sequence reconstruction normalized_rate : bool If True, sets the mutation rate prefactor to 1.0. fixed_pi : np.array Provide the equilibrium character concentrations. If None is passed, the concentrations will be inferred from the alignment. pc: float Number of pseudo counts to use in gtr inference Returns ------- gtr : GTR The inferred GTR model """ if site_specific and self.data.compress: raise TypeError("TreeAnc.infer_gtr(): sequence compression and site specific GTR models are incompatible!" ) if not self.ok: raise MissingDataError("TreeAnc.infer_gtr: ERROR, sequences or tree are missing", 0) # if ancestral sequences are not in place, reconstruct them if marginal and self.sequence_reconstruction!='marginal': self._ml_anc_marginal(**kwargs) elif not self.sequence_reconstruction: self._ml_anc_joint(**kwargs) n = self.gtr.n_states L = len(self.tree.root._cseq) # matrix of mutations n_{ij}: i = derived state, j=ancestral state n_ija = np.zeros((n,n,L)) T_ia = np.zeros((n,L)) self.logger("TreeAnc.infer_gtr: counting mutations...", 2) for node in self.tree.get_nonterminals(): for c in node: if marginal: mut_stack = np.transpose(self.get_branch_mutation_matrix(c, full_sequence=False), (1,2,0)) T_ia += 0.5*self._branch_length_to_gtr(c) * mut_stack.sum(axis=0) * self.data.multiplicity(mask=c.mask) T_ia += 0.5*self._branch_length_to_gtr(c) * mut_stack.sum(axis=1) * self.data.multiplicity(mask=c.mask) n_ija += mut_stack * self.data.multiplicity(mask=c.mask) else: for a,pos, d in c.mutations: try: i,j = self.gtr.state_index[d], self.gtr.state_index[a] except: # ambiguous positions continue cpos = self.data.full_to_compressed_sequence_map[pos] n_ija[i,j,cpos]+=1 T_ia[j,cpos] += 0.5*self._branch_length_to_gtr(c) T_ia[i,cpos] -= 0.5*self._branch_length_to_gtr(c) for i, nuc in enumerate(self.gtr.alphabet): cseq = c.cseq if cseq is not None: ind = cseq==nuc T_ia[i,ind] += self._branch_length_to_gtr(c)*self.data.multiplicity(mask=c.mask)[ind] self.logger("TreeAnc.infer_gtr: counting mutations...done", 3) if site_specific: if marginal: root_state = self.tree.root.marginal_profile.T else: root_state = seq2prof(self.tree.root.cseq, self.gtr.profile_map).T self._gtr = GTR_site_specific.infer(n_ija, T_ia, pc=pc, root_state=root_state, logger=self.logger, alphabet=self.gtr.alphabet, prof_map=self.gtr.profile_map) else: root_state = np.array([np.sum((self.tree.root.cseq==nuc)*self.data.multiplicity(mask=self.tree.root.mask)) for nuc in self.gtr.alphabet]) n_ij = n_ija.sum(axis=-1) self._gtr = GTR.infer(n_ij, T_ia.sum(axis=-1), root_state, fixed_pi=fixed_pi, pc=pc, alphabet=self.gtr.alphabet, logger=self.logger, prof_map = self.gtr.profile_map) if normalized_rate: self.logger("TreeAnc.infer_gtr: setting overall rate to 1.0...", 2) if site_specific: self._gtr.mu /= self._gtr.average_rate().mean() else: self._gtr.mu=1.0 return self._gtr
def infer_gtr_iterative(self, max_iter=10, site_specific=False, LHtol=0.1, pc=1.0, normalized_rate=False): """infer GTR model by iteratively estimating ancestral sequences and the GTR model Parameters ---------- max_iter : int, optional maximal number of iterations site_specific : bool, optional use a site specific model LHtol : float, optional stop iteration when LH improvement falls below this cutoff pc : float, optional pseudocount to use normalized_rate : bool, optional set the overall rate to 1 (makes sense when optimizing branch lengths as well) Returns ------- str success/failure code """ self.infer_ancestral_sequences(marginal=True) old_p = np.copy(self.gtr.Pi) old_LH = self.sequence_LH() for i in range(max_iter): self.infer_gtr(site_specific=site_specific, marginal=True, normalized_rate=normalized_rate, pc=pc) self.infer_ancestral_sequences(marginal=True) dp = np.abs(self.gtr.Pi - old_p).mean() if self.gtr.Pi.shape==old_p.shape else np.nan deltaLH = self.sequence_LH() - old_LH old_p = np.copy(self.gtr.Pi) old_LH = self.sequence_LH() self.logger("TreeAnc.infer_gtr_iterative: iteration %d, LH=%1.2f (%1.2f), deltaP=%1.4f"% (i, old_LH, deltaLH, dp), 2) if deltaLH<LHtol: self.logger("TreeAnc.infer_gtr_iterative: deltaLH=%f, stopping iteration."%deltaLH,1) break return ttconf.SUCCESS def optimize_gtr_rate(self): """Estimate the overal rate of the GTR model by optimizing the full likelihood of the sequence data. """ from scipy.optimize import minimize_scalar def cost_func(sqrt_mu): self.gtr.mu = sqrt_mu**2 self.postorder_traversal_marginal() self.total_LH_and_root_sequence(sample_from_profile=False, assign_sequence=False) return -self.sequence_LH() old_mu = self.gtr.mu try: sol = minimize_scalar(cost_func, bracket=[0.01*np.sqrt(old_mu), np.sqrt(old_mu),100*np.sqrt(old_mu)], method='brent') except: self.gtr.mu=old_mu self.logger('treeanc:optimize_gtr_rate: optimization failed, continuing with previous mu',1,warn=True) return if sol['success']: self.gtr.mu = sol['x']**2 self.logger('treeanc:optimize_gtr_rate: optimization successful. Overall rate estimated to be %f'%self.gtr.mu,1) else: self.gtr.mu=old_mu self.logger('treeanc:optimize_gtr_rate: optimization failed, continuing with previous mu',1,warn=True) ############################################################################### ### Utility functions ############################################################################### def get_reconstructed_alignment(self, reconstruct_tip_states=False): """ Get the multiple sequence alignment, including reconstructed sequences for the internal nodes. Parameters ---------- reconstructed_tip_sequences : bool, optional return reconstructed sequences of terminal nodes. If these have not been reconstructed yet, this will trigger a rerun of `infer_ancestral_sequences` Returns ------- new_aln : MultipleSeqAlignment Alignment including sequences of all internal nodes """ from Bio.Align import MultipleSeqAlignment from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord self.logger("TreeAnc.get_reconstructed_alignment ...",2) if (not self.sequence_reconstruction) or (reconstruct_tip_states != self.reconstructed_tip_sequences): self.logger("TreeAnc.reconstructed_alignment... reconstruction not yet done",3) self.infer_ancestral_sequences(reconstruct_tip_states=reconstruct_tip_states) if self.data.is_sparse: new_aln = {'sequences': {n.name: self.data.compressed_to_sparse_sequence(n.cseq) for n in self.tree.find_clades()}} new_aln['reference'] = self.data.ref new_aln['positions'] = self.data.nonref_positions new_aln['inferred_const_sites'] = self.data.inferred_const_sites else: new_aln = MultipleSeqAlignment([SeqRecord(id=n.name, seq=Seq(self.sequence(n, reconstructed=reconstruct_tip_states, as_string=True, compressed=False)), description="") for n in self.tree.find_clades()]) return new_aln def sequence(self, node, reconstructed=False, as_string=True, compressed=False): """return the sequence of a node. Parameters ---------- node : Phylo.node, str node in tree reconstructed : bool, optional return the reconstructed sequence also for terminal nodes. this will replace ambiguous sites with the most likely sequence state. as_string : bool, optional return the sequence as contiguous string rather than a character array compressed : bool, optional return the a sequence where unique alignment patterns are reduced to one alignment column each Returns ------- str or np.array sequence of node """ if type(node)==str: if node in self.leaves_lookup: nodes = self.leaves_lookup else: raise ValueError("TreeAnc.sequence accepts strings are argument only when the node is terminal and present in the leave lookup table") if reconstructed and not self.reconstructed_tip_sequences: raise ValueError("TreeAnc.sequence can only return reconstructed terminal nodes if TreeAnc.infer_ancestral_sequences was run with this the flag `reconstruct_tip_states`.") if compressed: if (not reconstructed) and (node.name in self.data.compressed_alignment): tmp_seq = self.data.compressed_alignment[node.name] else: tmp_seq = node.cseq else: if (not reconstructed) and (node.name in self.data.aln): tmp_seq = self.data.aln[node.name] elif node.cseq is not None: tmp_seq = self.data.compressed_to_full_sequence(node.cseq, as_string=False) else: tmp_seq = np.array([self.gtr.ambiguous or 'N']*self.sequence_length) return "".join(tmp_seq) if as_string else np.copy(tmp_seq)
[docs] def get_tree_dict(self, keep_var_ambigs=False): return self.get_reconstructed_alignment()
def recover_var_ambigs(self): self.logger("TreeAnc: recover_var_ambigs: calls to recover_var_ambigs are no longer necessary since tip states are not inferred unless explicitly specified using `reconstruct_tip_states=True`.", 0, warn=True) if self.reconstructed_tip_sequences: self.logger("Your code reconstructed tip states, please change the call of ancestral inference in your code",0, warn=True) else: self.logger("Your analysis did not reconstructed tip states, you can remove the call of `recover_var_ambigs`",0, warn=True)